Você utiliza Extração Líquido-Líquido (LLE)?

Existe um caminho mais limpo!

Rota para o Sucesso

Aos nossos usuários de Extração Líquido-Líquido (LLE),

Substituam a Extração Líquido-Líquido e encontrem um caminho para amostras mais limpas. Ámbos os destinos irão aumentar a produtividade, economizar tempo, melhorar a Seletividade e levar a resultados mais consistentes.

Então, qual direção você escolhe?

Destino: Limpo

Extração Líquida Suportada (SLE)

- Suportes sólidos simulam a extração Líquido-Líquido
- Sem Emulsões
- Reduz o consumo de Solventes
- 2 passos simples: carregar e eluir

Destino: Mais limpo

Extração em Fase Sólida (SPE)

- Voltado especificamente para Analitos de interesse e para remover as interferências da matriz
- Recuperações mais altas e consistentes
- Processe volumes de amostras pequenos ou limitados
- Maior concentração

Confuso? Perdido? Frustrado?

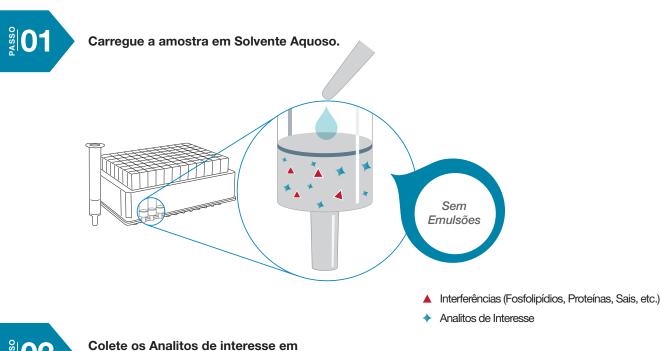
Deixe a nossa equipe orientar você!

Envie-nos um e-mail: allcrom@allcrom.com.br

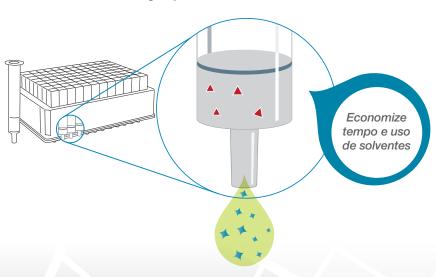
Fale conosco pelo Chat: www.allcrom.com.br/chat

© 2017 Phenomenex, Inc. Todos os direitos reservados.

PDestino: Limpo	KM
Extração Líquida Suportada (SLE)	pp. 4-10
Visão geral	p. 4
Aplicação SLE: Corticosteróides de Plasma	p. 6
Aplicação SLE: Pesquisa abrangente de Drogas em Urina	p. 7
Aplicação SLE: Esteróis em Azeite de Oliva	p. 8
Aplicação SLE: Ácidos, Neutros e Bases em Urina	p. 10
P Destino: Mais limpo	
Extração em Fase Sólida (SPE)	рр. 11-16
Visão geral	p. 11
Aplicação SPE: Drogas Farmacêuticas	p. 12
Aplicação SPE: Poluentes Ambientais Semivoláteis	p. 14
Aplicação SPE: Catecolaminas em Urina	p. 16
Informações para Compras	pp. 17-19


Phenomenex | WEB: www.phenomenex.com

Extração Líquida Suportada (SLE)


A Extração Líquida Suportada (SLE) produz resultados mais reprodutíveis, tem maior precisão e maiores possibilidades de rendimento do que a Extração Líquido-Líquido (LLE), utilizando um Suporte sólido para imitar a extração Líquido-Líquido. A Phenomenex oferece dois tipos de Sorventes para Extração Líquida Suportada: Terra Diatomácea (Strata[®] DE) e um Sorvente Sintético exclusivo (Novum[™]). Com pouquíssimo Desenvolvimento de método, as duas opções de Extração Líquida Suportada removem interferências indesejadas da matriz para fornecer amostras mais limpas do que a Extração Líquido-Líquido.

Dois passos simples para uma Extração mais limpa:

og | 02

Colete os Analitos de interesse em solvente imiscível em água para análise.

Extração Líquida Suportada (SLE)

Selecione seu sorvente SLE!

Veja as diferenças de nossas opções de Sorventes:

Sintético

Sorvente

Terra Diatomácea

Consistência e Reprodutibilidade Lote a Lote

Vantagens

Econômico com capacidades para grandes volumes

Acetato de Etila, Éter Metil-Terc-Butílico (MTBE) Solventes de Extração

Diclorometano (DCM), Hexano, MTBE, Acetato de Etila

Placas com 96 poços MINI, Placas com 96 poços MAX Formatos de Placa

Placas com 96 poços 200 μ L, Placas com 96 poços 400 μ L

1 cc, 3 cc, 6 cc, e 12 cc

Formatos de Tubo

12cc e 60cc

Ainda precisa de ajuda?

As seleções de Sorventes para SLE dependem dos solventes de Extração, dos Volumes das amostras e dos Analitos que serão extraídos. Para saber qual produto SLE é ideal para seu método de extração:

ou

Fale conosco pelo Chat ao vivo www.allcrom.com.br/chat

Phenomenex | WEB: www.phenomenex.com

Aplicação de SLE: Extração de Corticosteroides em Plasma

Introdução

Um método foi estabelecido usando o Strata® DE SLE para uma ampla gama de compostos Corticosteroides em Plasma, que são analisados por HPLC-UHPLC/MS/MS. Todos os compostos apresentam recuperação superior a 90%, mostrando altas capacidades de recuperação disponíveis quando se utiliza a Extração Líquida Suportada ao invés da Extração Líquido-Líquido, com exceção da Triancinolona. Triancinolona é o composto mais Polar e é simplesmente muito Hidrófilo para ser extraído pelo DCM. Recuperações aceitáveis podem ser obtidas ao escolher o Acetato de Etila como Solvente de Eluição. Todos os compostos mostram uma porcentagem (%) Coeficiente de Variação - CV inferior a 12%. Usando um método simples com o Strata DE SLE, foram alcançadas altas recuperações e baixa variabilidade entre as amostras.

Pré-tratamento

Dilua 100 μ L de Plasma enriquecido (125 ng/mL) em 200 μ L de Água.

Protocolo Extração Líquida Suportada - SLE

Placa com 96 poços:		
Referência:	8E-S325-5GB	
Carregar:	300 µL de Amostra pré-tratada na placa (aplicar vácuo ou pressão positiva para puxar/empurrar a Amostra no sorvente, se necessário)	
Aguardar:	5 minutos	
Eluir:	$3\times600~\mu\text{L}$ de Diclorometano (DCM) ou Acetato de Etila	
Aplicar:	Aplicar vácuo ou pressão positiva a 5-10 polegadas de Mercúrio - Hg por 10 segundos	
Secar:	Amostra sob fluxo lento de Nitrogênio a 30 °C	
Reconstituir:	200 μL Acetonitrila/Água (20:80)	

Condições do HPLC/MS/MS

Coluna: Kinetex® 2,6 µm C18 Dimensões: 50 x 2,1 mm Referência: 00B-4462-AN Cartucho de proteção: SecurityGuard™ ULTRA C18

Referência: AJ0-8782

Fase Móvel: A: Ácido Fórmico a 0,1% em Água B: Ácido Fórmico a 0,1% em Acetonitrila

Fluxo: 0,5 mL/min

Injeção: 5 µL

Detecção: MS/MS (SCIEX API 4000™), ESI+

Valores de recuperação e % Desvio Padrão Relativo - DPR

Solvente de Eluição	Diclorometano		Acetato de Etila	
	% de Recuperação	% DPR (n=4)	% de Recuperação	% DPR (n=10)
β-Metasona	92	4	98	6
Cortisona	96	10	96	8
Corticosterona	92	3	74	10
Acetato de Cortisona	90	12	112	12
Triancinolona	13	8	92	9
Prednisona	94	7	93	10
Testosterona	95	5		

^{*}A Testosterona não é extraída usando Acetato de Etila

Valores altos de recuperação e valores baixos de DPR usando o Strata DE!

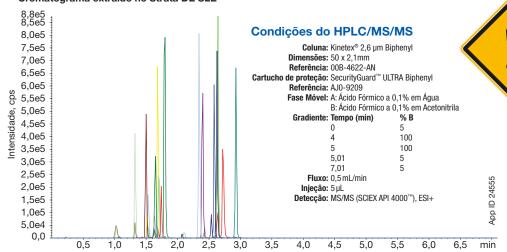
Aplicação de SLE: Painel abrangente de pesquisa de Drogas em Urina

Introdução

Para determinar se o Strata® DE é uma alternativa viável ao Biotage® ISOLUTE® SLE+, Drogas de Abuso foram extraídas em Urina e depois analisadas por HPLC/MS/MS. Os valores de Recuperação e a porcentagem (%) dos CVs do Strata DE SLE e do Biotage ISOLUTE SLE+ estão na tabela 1. Embora as recuperações variem ligeiramente entre diferentes Analitos, os dois produtos mostram uma recuperação de 85% para todos os Analitos incluídos. Para esse conjunto de amostras, o Strata DE mantém uma porcentagem (%) do CV média de 9%, enquanto a placa Biotage ISOLUTE SLE+ tem uma porcentagem (%) do CV média ligeiramente maior de 10%. Os dados mostram que o Strata DE é comparável a um produto SLE de Terra Diatomácea e apresenta altas recuperações consistentemente com excelente Separação em um painel abrangente de Pesquisa de Drogas.

Pré-tratamento

Combine 100 μ L de Urina enriquecida, 15 μ L de β -Glucuronidase Campbell (Referência: DR2102), 35 μ L de Acetado de Amônia 100 mM (pH 4) e 150 μ L de Bicarbonato de Amônia 100 mM (pH 10).


Protocolo Extração Líquida Suportada - SLE

TOLOGOIO EXL	ragao Erquida Ouportada OEE	
Placa com 96 poços:	Strata DE SLE 400 µL placa com 96 poços Biotage ISOLUTE SLE+ 400 µL placa com 96 poços	
Referência:	8E-S325-5GB (Strata DE)	
Carregar:	300 µL de Amostra pré-tratada na placa (aplicar vácuo ou pressão positiva para puxar/empurrar a Amostra no sorvente, se necessário)	
Aguardar:	6 minutos	
Eluir:	3 x 600 μL Diclorometano/IPA (95:5)	
Aplicar:	Aplicar vácuo ou pressão positiva a 5-10 polegadas de Mercúrio - Hg por 10 segundos	
Secar:	Amostra sob fluxo lento de Nitrogênio a 30 °C	
Reconstituir:	100 µL de Ácido Fórmico/Metanol a 0,1% (4:1) com padrão interno	

Tabela 1. Valores de recuperação e % dos CVs: Strata DE x Biotage ISOLUTE SLE+

Solvente de Eluição	Strata DE		Biotage ISOLUTE SLE+	
	% de		% de Recuperação	% do CV (n=8)
6-MAM	98	9	88	16
Alprazolam	104	10	98	11
Benzoilecgonina	88	6	98	11
Buprenorfina	93	7	102	15
Codeína	99	12	93	9
Diazepam	107	7	104	6
Fentanil	85	5	94	8
Hidrocodona	104	11	93	11
Hidromorfona	95	9	93	11
Lorazepam	94	8	98	8
Metanfetamina	92	16	102	8
Morfina	98	12	94	12
Norbuprenorfina	101	11	92	11
Nordiazepam	100	9	92	8
Norfentanil	113	7	110	11
Oxicodona	97	5	93	11
Fenciclidina	90	7	98	6

Cromatograma extraído no Strata DE SLE

Strata DE é uma alternativa econômica para os outros produtos de Extração Líquida Suportada - SLE!

O comparativo das Separações pode não ser representativo para todas as $\mbox{\rm Aplica}\xspace$ ões.

Phenomenex | WEB: www.phenomenex.com

Destino: Limpo

Aplicação de SLE: Determinação de Esteróis em Azeite

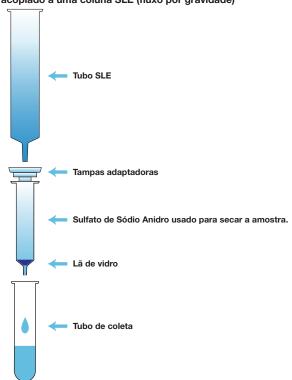
Introdução

Devido as frequentes adulterações foi desenvolvido um método confiável e eficiente para determinar a concentração de Esteróis em Azeite de Oliva, o que pode confirmar a sua classificação. Aqui é apresentado um método modificado do International Olive Council (IOC) para a determinação de Esteróis melhorado por meio da substituição da Extração LLE por um protocolo SLE usando Terra Diatomácea -Strata® DE, obtemos uma extração rápida e precisa com maior limpeza da amostra por Extração em Fase Sólida (SPE) removendo Hidrocarbonetos, bem como mais interferências Polares da solução. Os Esteróis isolados e os Álcoois Triterpenos são derivatizados como os Éteres Trimetilsilílicos antes da análise por GC-FID. O resultado é um método melhor para determinar Esteróis, Eritrodiol e Uvaol do Azeite de Oliva utilizando técnicas de Extração mais rápidas e precisas.

Pré-tratamento

Preparação do padrão interno

Adicione 40 μ L de Colestanol a 1 mg/mL em Clorofórmio em um tubo de ensaio limpo e seco de 20 mL e evapore até secar sob um fluxo de Nitrogênio.

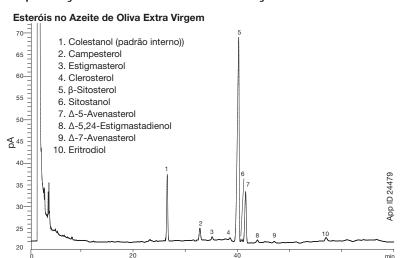

Saponificação

- Adicione 200 mg de amostra do Azeite de Oliva ao tubo de ensaio contendo o padrão interno.
- Adicione 1,5 mL de Hidróxido de Potássio 2M em 95% de Etanol.
- 3. Tampe o tubo e aqueça em um forno a 80 °C por 25 minutos.
- Misture a amostra delicadamente para garantir a homogeneidade (a amostra deve parecer como uma solução clara) continue a aquecer por mais 25 minutos.
- Após o aquecimento adicione 13,5 mL de Água deionizada e misture. Todo o volume diluído já está pronto para ser carregado no cartucho de SLE.

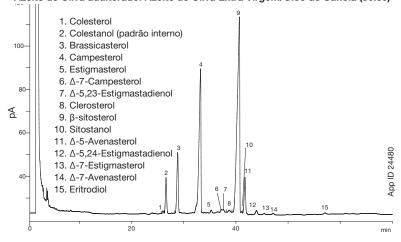
Protocolo de Extração Líquida Suportada - SLE

Cartucho:	Cartucho Strata DE SLE, 20 mL de capacidade de carga, tubo de 60 cc
Referência:	8B-S325-VFF
Carregar:	Amostra diluída (do passo 5 da saponificação) mais enxágue com 2 x 1 mL de Água Deionizada (17 mL do volume total, fluxo por gravidade)
Aguardar:	15 minutos
Extrair:	3 x 15 mL de Éter Dietílico (fluxo por gravidade)
Evaporar:	Seque sob Nitrogênio - $\rm N_2$ a 40 °C (resíduo oleoso amarelo-esverdeado)
Reconstituir:	5 mL de Hexano

Configuração SLE do tubo de secagem com Sulfato de Sódio acoplado a uma coluna SLE (fluxo por gravidade)


Sulfato de Sódio Anidro usado para secar a amostra.

Protocolo de SPE e Derivatização


Equilibrar:	5 mL de Hexano (imediatamente após a Eluição do Hidróxido de Potássio)	
Carregar:	Extrato SLE reconstituído (5 mL) seguido de 2 enxágues de 1 mL de Hexano	
Lavagem:	85 mL de Hexano/Éter Dietílico (98:2) em vácuo de 3 polegadas de Mercúrio - Hg, fluxo de 2 mL/min*	
Eluir:	10 mL Hexano/Éter Dietílico (60:40)	
Secar:	Seque sob Nitrogênio - N2 a 50 °C. Após evaporação até secar, adicione 3~4 gotas de Acetona e depois evapore novamente sob Nitrogênio - N2 para remover a Água ocluída. Coloque no forno a 100 °C por 10 minutos	
Derivatização:	250 μL de Piridina/BSTFA (3:1) a 80 °C por 30 minutos	

^{*}Para comportar o grande volume do eluente, um tubo de reservatório vazio de 60 mL foi acoplado ao tubo SPE de 6 mL.

Aplicação de SLE: Determinação de Esteróis em Azeite (cont.)

Azeite de Oliva adulterado: Azeite de Oliva Extra Virgem/Óleo de Canola (50:50)

Condições do GC-FID

Condições para as duas separações: Coluna: Zebron™ ZB-5_{PLUS}™ Dimensões: 30 m x 0,25 mm x 0,25 μm

Referência 7HG-G032-11

Liner recomendado: Zebron PLUS Single Taper Z-Liner™ (for Agilent® systems)

Liner Referência: AG2-0A13-05 Injeção: Split 5:1 a 280 °C, 1 µL

Gás de Arraste: Hélio a 0,9 mL/min (Fluxo constante)

Programa do Forno: 260°C por 70 min Detector: FID @ 300 °C

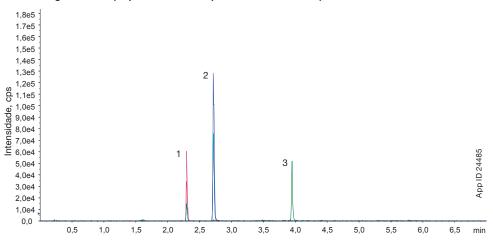
Amostras: Os Analitos foram derivatizados com Piridina/BSTFA (3:1)

Critérios de Esteróis do IOC para a classificação do Azeite de Oliva Virgem

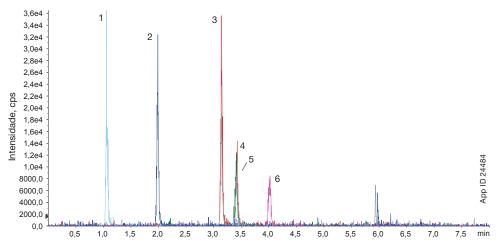
Nome padrão	Critérios padrão do IOC para o	Azeite de Oliva Extra Virgem		Azeite de Oliva adulterado	
	Azeite de Oliva Virgem	% de Recuperação	% DPR (n=3)	% de Recuperação	% DPR (n=2)
β-Sitosterol aparente	≥ 93,0% do total de Esteróis	94,6%	0,3	60,3%	1,2
Cholesterol	≤ 0,5% do total de Esteróis	não detectado	-	0,3%	13,3
Brassicasterol	≤ 0,1% do total de Esteróis	não detectado	-	8,7%	0,7
Campesterol	≤ 4,0% do total de Esteróis	3,8%	6,8	29,1%	1,3
Estigmasterol	≤ Campesterol (≤ 4,0% do total de Esteróis)	1,0%	9,0	0,6%	45,0
Δ-7-Estigmasterol	≤ 0,5% do total de Esteróis	não detectado	-	0,7%	2,9
Uvaol + Eritrodiol	≤ 4,5% do total de Esteróis	1,8%	31	0,3%	1,0
Total Sterols	≥ 1000 mg/kg	1324 mg/kg	6	4221 mg/kg	1,0

^{*} β-sitosterol aparente = β-Sitosterol + Δ-5-Avenasterol + Δ-5,23-Estigmastadienol + Clerosterol + Sitostanol + Δ-5,24-Estigmastadienol. Total de Esteróis = Colesterol + 24-Metileno Colesterol + Brassicasterol + Campesterol + Campesterol + Δ-7-Campesterol + Δ-5,23-Estigmastadienol + β-Sitosterol aparente + Δ-7-Avenasterol.

Aplicação de SLE: Ácidos, Neutros e Bases da Urina


Introdução

Na maioria dos métodos de Extração Líquida Suportada – LLE a extração de pHs diversos não é viável. Vamos demonstrar como uma manipulação específica do pH pode levar a condições de extração de um Ácido relativamente Hidrofóbico (THC-COOH) junto a Bases mais Polares (Buprenorfina e Norbuprenorfina) e neutras (Barbitúricos). Desenvolvemos uma aplicação SLE para Ácidos, Neutros e Bases usando a extração com SLE Novum[™] de uma matriz de Urina contendo β-Glucuronidase seguida de dois métodos de HPLC/MS/MS. Esse método mostra a Versatilidade e Eficácia usando o Novum SLE.


Pré-tratamento

Para 200 μ L de Urina, adicione 25 μ L de Enzima de β -Glucuronidase, 25 μ L de Acetato de Amônia (100 mM, pH 4), 180 μ L de Bicarbonato de Amônia (100 mM, pH 9) e 20 μ L de padrão interno (1 μ g/mL). O volume total final é de 450 μ L.

Cromatograma ESI+ (Buprenorfina/Norbuprenorfina/THC-COOH)

Cromatograma ESI- (mistura de Barbitúricos)

Protocolo de Extração Líquida Suportada - SLE

Placa com 96 poços:	Novum MAX SLE placa com 96 poços	
Referência:	8E-S138-5GA	
Carregar:	Amostra pré-tratada e pulso de vácuo em 5 polegadas de Mercúrio - Hg por 2~3 segundos, ou até a amostra entrar completamente no leito do sorvente. Aguardar 6 minutos	
Eluir:	2 x 900 µL de Acetato de Etila e eluir por gravidade. Aplicar 5 polegadas de vácuo no final da Eluição para coletar o solvente residual das pontas da Placa de coleta	
Secar:	Sob um fluxo suave de Nitrogênio a 30 °C	
Reconstituir:	Reconstituir em 100 µL de Metanol/Água (1:4) com 100 ng/mL de COOH-THC-D3, 250 ng/mL de Amobarbital-D5 e 100 ng/mL de Morfina-D6	

Condições do HPLC-MS/MS em modo positivo

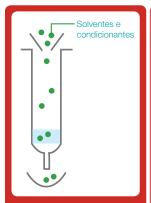
Coluna: Kinetex® 2,6 µm Biphenyl 100Å Dimensões: 50 x 2,1 mm Referência: 00B-4622-AN Cartucho de proteção: SecurityGuard™ ULTRA Biphenyl Referência: AJ0-9209 Fase Móvel: A: Ácido Fórmico a 0.1% em Água B: Ácido Fórmico a 0,1% em Acetonitrila Gradiente: Tempo (min) %B 100 5,1 5 5 Fluxo: 0.5 ml /min Iniecão: 4 uL Temperatura: Ambiente Detecção: MS/MS (SCIEX API 4000™) Amostra: 1. Norbuprenorfina 2. Buprenorfina 3 THC-COOH

Condições do HPLC/MS/MS em modo negativo

em modo negativo Coluna: Kinetex 2,6 µm EVO C18 100Å Dimensões: 50 x 2,1 mm Referência: 00B-4725-AN Cartucho de proteção: SecurityGuard ULTRA EVO C18 Referência: AJ0-9298 Fase Móvel: A: Bicarbonato de Amônia a 10 mM, pH 9 B: Acetonitrila Gradiente: Tempo (min) %B 0 15 20 5,01 60 60 Fluxo: 0.5 mL/min Iniecão: 4 uL Temperatura: Ambiente Detecção: MS/MS (SCIEX API 4000) Amostra: 1. Fenobarbital 4. Amobarbital 2 Butalbital 5. Amobarbital-D5

3. Pentobarbital

6 Secobarbital

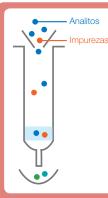

Extração em Fase Sólida (SPE)

A Extração em Fase Sólida - SPE é a forma mais específica de Preparação de Amostras. Ela pode envolver uma abordagem automatizada para Concentrar amostras, limpar os efeitos da matriz e pode ser usada para a troca de solventes. O SPE oferece uma variedade de vantagens técnicas e benefícios econômicos importantes que a Extração Líquido-Líquido - LLE não pode proporcionar.

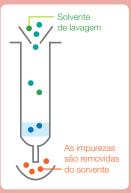
Protocolo geral SPE

1. CONDICIONAMENTO

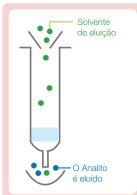
2. EQUILIBRAR



Um passo de Condicionamento ativa o sorvente SPF.


Um solvente de equilíbrio prepara o sorvente para interação com sua Amostra.

3. CARREGAR A AMOSTRA


Os Analitos de interesse são carregados no sorvente e direcionados seletivamente para se ligarem ao sorvente SPE.

4. LAVAR AS IMPUREZAS

As interferências são removidas.

5. ELUIR O ANALITO

Um solvente de eluição quebra o vínculo entre o sorvente SPE e seus Analitos de interesse, permitindo que eles sejam coletados para Análise posterior.

Agora sua amostra está Limpa e Concentrada!

Recomendação de produto com base nos Analitos de interesse

Ácidos Fortes (pK _a < 2)	Strata®-X-AW
Ácidos Fracos (pK _a 2-4)	Strata-X-A
Compostos Neutros	Strata-X
Bases Fracas (pK _a 8-10)	Strata-X-C
Bases Fortes (pK _a > 10)	Strata-X-CW

Aplicação de SPE: Aumento da Recuperação de Fármacos

Introdução

A extração em Fase Sólida - SPE tem uma especificidade melhorada em relação a certos Analitos e permite que os Analistas melhorem a Recuperação e a Reprodutibilidade de suas amostras. Esse método explora as diferenças distintas entre SLE e LLE para o isolamento de Diclofenaco, um composto Fármaco ligeiramente Ácido, a partir do Plasma usando uma matriz de Água como controle. Verificou-se que a Extração em Fase Sólida - SPE fornece Extratos mais limpos, Recuperações mais elevadas e melhor Reprodutibilidade, o que pode melhorar significativamente os resultados.

Materiais e métodos

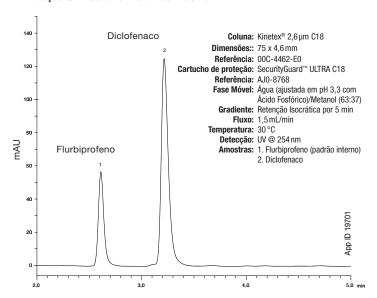
O passo de pré-tratamento com Plasma foi o mesmo para a SPE e LLE, consistindo em uma filtração com gaze. Em seguida, adicionou-se 500 μ L de Diclofenaco, dissolvido em 5% de Metanol, a 500 μ L de Plasma. Em seguida, a mistura em solução foi acidificada com 600 μ L de Ácido Fosfórico 1M.

Protocolo de SPE

Cartucho::	Strata®-X 30 mg on a 1 mL Presston™ 100 Positive Pressure Manifold (Part No.: AH0-9342)	
Referência:	8B-S100-TAK	
Condição:	1 mL de Metanol	
Equilibrar:	2 mL de Água	
Carregar:	1,6 mL de Plasma pré-tratado	
Lavagem:	1 mL de Metanol a 5%	
Secar:	1 minuto sob vácuo a 10 polegadas de Mercúrio - Hg	
Eluir:	1 mL de Metanol	
Secar:	Secar a 53 °C sob um fluxo de Nitrogênio por 20 minutos	
Reconstituir:	500 μL de Fase Móvel	

Extração Líquido-Líquido (LLE)

- Após o pré-tratamento, adicione 5 mL de Hexano/ Álcool Isopropílico (95:5) à solução pré-tratada
- 2. Submeter a agitação vortex por 1 minuto e depois centrifugar a 2.000 rpm por 10 minutos
- 3. Retirar 4 mL da camada Orgânica superior e transferir para um tubo de vidro limpo de centrifugação.
- Evaporar até secar sob um fluxo de Nitrogênio a 53 °C por 20 minutos


Estrutura de Flurbiprofeno e Diclofenaco do padrão interno

Flurbiprofeno (p
$$K_a = 4,2$$
)

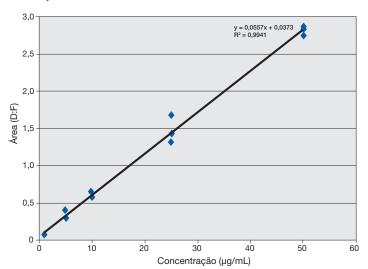
 CI
 NH
 CI
 OH
 OH

HPLC-UV

Cromatograma de Diclofenaco e padrão interno após a Extração SPE de uma matriz de Plasma.

Amostra de Plasma enriquecida com Diclofenaco (50 μ g/mL) após extração com Strata-X. O Flurbiprofeno (padrão interno) foi adicionado após a extração a uma concentração de 160 μ g/mL.

Observação: o Flurbiprofeno foi adicionado pós-resfriamento, e também pós-extração.



Aplicação de SPE: Aumento da Recuperação de Fármacos (cont.)

Curva de Referência do Diclofenaco extraído: Extração Líquido-Líquido em matriz de Plasma

1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0 0 10 20 30 40 50 60 Concentração (μg/mL)

Curva de Referência do Diclofenaco extraído: Extração em Fase Sólida em matriz de Plasma

Resultados e discussão

Verificou-se que o SPE no sorvente Strata®-X produz aproximadamente 86% de Recuperação absoluta de 15 µg/mL de Diclofenaco na matriz de Plasma em contraste com os 46% da Extração LLE (Tabela 1). Isso representa uma diminuição de quase duas vezes na Recuperação quando se usa a Extração LLE. Além disso, embora esse procedimento para Extração LLE tenha envolvido um passo de Extração, para se obter um rendimento maior,

Tabela 1. % de Recuperação absoluta para Diclofenaco

	Concentração enriquecida (µg/mL)	Diclofenaco (% de Recuperação)	% DPR média (n=4)
SPE	15	86	10
LLE	15	46	35

seria necessária uma quantidade maior de solvente. Isso não aumentaria apenas o tempo necessário para obter um maior rendimento da Extração, mas também aumentaria o tempo total necessário para a evaporação do solvente. Além da Extração SPE proporcionar uma porcentagem (%) de Recuperação absoluta duas vezes maior em relação à Extração LLE, o procedimento com sorvente Strata-X mostra menos Variabilidade entre elas. De acordo com os valores de % DPR para as Extrações SPE e LLE, a Extração SPE é mais Precisa e Reprodutível do que a Extração LLE para Compostos Farmacêuticos.

Consequentemente, esses dados mostram que a Extração SPE proporciona uma Recuperação absoluta maior do Diclofenaco quando comparada a Extração LLE: A Extração SPE é menos demorada, consome menos solvente do que os procedimentos de Extração LLE tradicionais e proporciona uma melhor Reprodutibilidade, demonstrando, assim, que o método preferencial de extração de Compostos Farmacêuticos, como o Diclofenaco, é a Extração SPE.

Aplicação de SPE: Análise melhorada de Poluentes Ambientais Semivoláteis

Introdução

O método da EPA 625, que testa uma ampla variedade de poluentes Orgânicos Semivoláteis em Água, especifica a Extração LLE seguido de análise em GC-MS. Com a importância do aumento de ganhos de Produtividade, a implementação bem-sucedida da técnica de SPE ganhou atenção sobre o método da Extração LLE tradicional pelo tempo de Extração mais rápido, menor uso de solventes, maior Reprodutibilidade e maior Recuperação. Esse método mostra uma metodologia SPE melhorada que incorpora cartuchos SPE Poliméricos de partículas grandes (Strata®-

Protocolo de SPE otimizado para o método EPA 625

Pré-tratamento

2 mL de Ácido Clorídrico - HCl concentrado foram enriquecidos em 1 L da matriz de Água para atingir um pH entre 1 e 3. Foram adicionados 20 μ L de cada substituto (Ácido e Base) a 1000 μ g/mL.

Protocolo de SPE

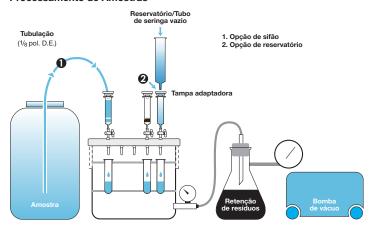
Cartucho: Strata-XL-C, 2 g/20 mL Giga™ Tube Referência: 8B-S044-KEG Condição: 10 mL de Metanol seguidos de 10 mL de água Deionizada A amostra de 1 L de Água pré-tratada foi carregada a Carregar: 10~12 mL/min Os tubos do reservatório utilizados para carregar a Secar: amostra foram removidos e os cartuchos SPE foram secos aplicando vácuo (15~20 polegadas de Mercúrio -Hg) por 4~5 minutos Eluição 1: • 2 alíquotas de 2 mL de Acetona • 2 alíquotas de 2 mL de Diclorometano/Acetona (3:1) • 3 alíquotas de 2 mL de Diclorometano 2 alíquotas de 4,5 mL de Acetato de Etila/Metanol (1: 1) em Eluição 2: NH₄OH a 1,5%. (Para preparar as alíquotas, combinaram-se 9,5 mL de Acetato de Etila com 9,5 mL de Metanol e 1 mL de Hidróxido de Amônio - NH₄OH a 30 % e submetidos a agitação vortex por 30 segundos) As frações de eluição 1 e eluição 2 passaram por cartuchos separados de Sulfato de Sódio Strata 10 g/20 mL para remover a Água por gravidade. As frações de eluição 1 e 2 concentradas foram coletadas em dois tubos de ensaio

> separados. Para coletar quantidades residuais de amostra dos cartuchos de Sulfato de Sódio Strata, foi realizado uma eluição com mais 4 mL de Diclorometano por cartucho. Após a adição de Diclorometano, formaram-se

duas camadas. Foi coletada a camada Orgânica inferior

eluição 2 ser reduzido a 0,5 mL. As amostras não foram

evaporadas até à secagem completa para evitar a perda


As frações de eluição 1 e eluição 2 foram combinadas

(volume total de ~1 mL) e reconstituídas a um volume total de 4 mL com Diclorometano. 50 µL do padrão interno foram enriquecidos a 1000 µg/mL

Phenomenex | WEB: www.phenomenex.com

As amostras foram secas usando um TurboVap® sob Nitrogênio (sem calor) até o volume da eluição 1 e da XL-C) e melhorias na secagem, o que é eficaz para Analitos da EPA 625 e é consideravelmente mais rápida e mais fácil do que a Extração LLE. Seguindo o protocolo de SPE otimizado, a amostra é analisada por GC-MS usando uma coluna Zebron™ ZB-SemiVolatiles GC, resultando em um tempo de corrida rápido de 17 minutos. Ao utilizar o método SPE de partículas grandes e o método GC descrito aqui a Eficiência, Reprodutibilidade e a Produtividade do método EPA 625 são drasticamente melhoradas

Acessórios e configuração SPE usados para o Processamento de Amostras

Condições do Cromatografo Gasoso - GC

Coluna: Zebron ZB-SemiVolatiles Dimensões: 30 meter x 0,25 mm x 0,25 μm Referência: 7HG-G027-11

Liner recomendado: Zebron PLUS Single Taper Z-Liner™ (por Agilent® Systems)

Referência do liner: AG2-0A13-05 Injeção: Sem split a 250 °C, 1 µL

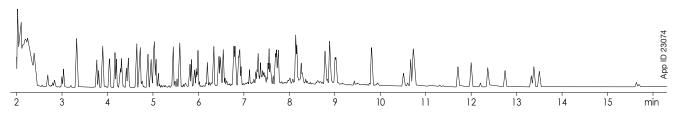
Gás de Arraste: Hélio a 1,6 mL/min (Fluxo constante)

Programa do Forno: 40°C por 0,66 min para 260 °C a 30 °C/min para 295 °C a 6 °C/min

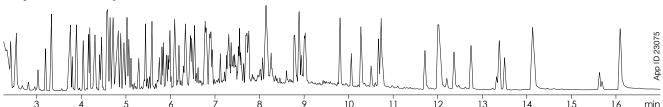
Detector: Massa - MSD a 300 °C; 40~500 amu **Amostras:** Veja a lista completa de Analitos on-line

de Analito

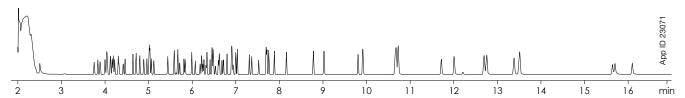
Reconstituir:



Aplicação de SPE: Análise melhorada de Poluentes Ambientais Semivoláteis (cont.)


Método de Extração SPE otimizado x Extração LLE

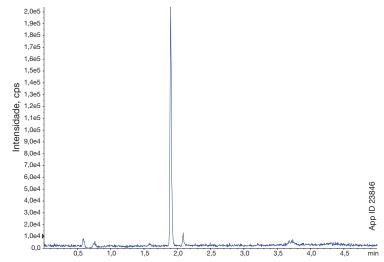
Componentes do Protocolo	Método LLE tradicional	Método SPE Strata®-XL-C	Melhorias do SPE
Produtividade (amostras/dia)	20	30-35	Aumento de 50-75%
Uso de Solventes (mL/amostra)	> 360	41	♣ Diminuição significativa
Vidraria	~ 100 peças (grandes)	< 100 tubos de ensaio (descartáveis)	♣ Diminuição significativa
Qualidade dos Dados	Suficiente	Melhorado	↑ Aumento
Trabalho Manual	Alto	Muito baixo	♣ Diminuição significativa
Passos do Processo	Dezenas	6	♣ Diminuição significativa


Extração da matriz TCLP

Extração da matriz da Água residual

Curva Padrão do método EPA 625 à 25 µg/mL

Aplicação de SPE: Extração com maior Sensibilidade e Análise de Catecolaminas em Urina


Introdução

Como um benefício adicional da Extração SPE o formato de Microeluição permite usar pequenas concentrações de amostras, obter altas Recuperações, maior Sensibiilidade nas análises, e ainda pular a etapa de Secagem para economizar mais tempo. A Extração LLE usa grandes volumes de solventes e requer altas Concentrações de Analitos para conseguir uma alta Recuperação e a etapa de secagem pode ser bastante demorada. Nessa aplicação, uma interferência que se coelui com a 3-Metoxitaramina em uma coluna de HPLC C18 padrão será resolvida usando placas com 96 pocos SPE de Microeluição Strata®-X-CW em conjunto com uma coluna de HPLC Kinetex® Byfenil, enquanto atingem limites baixos de Quantificação para Catecolaminas específicas na Urina, Metanefrina e Normetanefrina. Este método mostra que a Extração SPE por Microeluição pode Limpar e Concentrar volumes de amostra pequenos ou limitados.

Método SPE

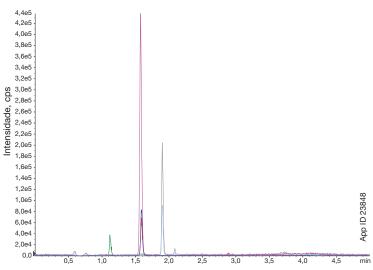
Strata-X-CW Placa com 96 poços de Microeluição, 2 mg/well
8M-S035-4GA
200 µL Metanol
200 µL de tampão de Acetato de Amônio 50 mM, pH 7
1 mL de amostra pré-tratada (500 μL de Urina diluídos com 500 μL de Acetato de Amônia 50 mM, (pH 7). A Urina foi pré-enriquecida com padrões
200 µL de tampão de Acetato de Amônio 50 mM, pH 7
200 µL de Acetonitrila/Álcool Isopropílico (1:1)
2 x 25 µL de Água/Acetonitrila/Ácido Fórmico (85:10:5)*
NÃO É NECESSÁRIA. Economize 30 minutos ou mais!
Diluir eluente com 100 μL de Ácido Fórmico a 0,1% em Água**

Cromatograma da interferência resolvida para a 3-Metoxitiramina a 1 ng/mL

Condições do HPLC/MS/MS

Coluna: Kinetex 5 µm Biphenyl Dimensões: 50 x 4,6 mm Referência: 00B-4627-E0 SecurityGuard™ ULTRA Biphenvl Cartucho de proteção: Referência: AJ0-9207 Fase Móvel: A: Ácido Fórmico a 0,1% em Água B: Ácido Fórmico a 0,1% em Acetonitrila Tempo (min) %B 90 3.1 5 de Eluição!!

Fluxo: 0,7 mL/min 30 µL Injeção: Ambiente


Detecção: MS/MS (SCIEX API 4000™)

Valores de Recuperação de 10 ng/mL a 63 pg/mL

Concentração de Analitos (ng/mL)	% Média de Recuperação	%CV (n=6)
Metanefrina		
10	102	5
1	102	3
0,5	99	2
0,25	99	3
0,125	97	3
0,063	94	6
Normetanefrina		
10	100	10
1	87	12
0,5	110	10
0,25	89	9
0,125	110	13
0,063	108	15
3-Metoxitiramina		
10	91	3
1	89	6
0,5	95	4
0,25	86	5
0,125	87	6
0,063	92	7

Cromatograma das Catecolamínas em Urina

Pequeno volume

Informações para compras de SLE

Extração com Terra Diatomácea (DE)

Placas Strata® DE SLE

Placas Strata® DE SLE de Terra Diatomácea					
Referência:	Descrição	Unidade			
8E-S325-FGB	Placas com 96 poços Strata DE SLE 200 µL	2/pct			
8E-S325-5GB	Placas com 96 poços Strata DE SLE 400 µL	2/pct			

Tubos Strata DE SLE

Tubos Strata-DE SLE de Terra Diatomácea					
Referência:	Descrição	Unidade			
8B-S325-KDG	Tubos Strata DE SLE 12 cc	20/pct			
8B-S325-VFF	Tubos Strata DE SLE 60 cc	16/pct			

Extração com Suporte Sintético

Placas Novum[™] SLE

Placas Novum™SLE para Extração Simplificada de Líquidos					
Referência:	Descrição	Unidade			
8E-S138-FGA	Placas com 96 poços Novum SLE MINI	1/pct			
8E-S138-5GA	Placas com 96 poços Novum SLE MAX	1/pct			

Tubos Novum SLE

Tubos Novum SLE para Extração Simplificada de Líquidos					
Referência:	Descrição	Unidade			
8B-S138-FAK	Tubos Novum SLE 1 cc	100/pct			
8B-S138-5BJ	Tubos Novum SLE 3 cc	50/pct			
8B-S138-JCH	Tubos Novum SLE 6 cc	30/pct			
8B-S138-KDG	Tubos Novum SLE 12 cc	20/pct			

O Extrator de Pressão Positiva Presston 100

Presston 100	
Referência:	Descrição
AH0-9334	Extrator de Pressão Positiva Presston 100, p/ Placa com 96 poços
AH0-9342	Extrator de Pressão Positiva Presston 100, completo p/ tubos de 1 mL
AH0-9347	Extrator de Pressão Positiva Presston 100, completo p/ tubos de 3 mL
AH0-9343	Extrator de Pressão Positiva Presston 100, completo p/ tubos de 6 mL

O Extrator de Pressão Positiva Presston 100 com Placa com 96 poços também é capaz de processar tubos de 1, 3 e 6 mL utilizando os seguintes kits adaptadores

Kits adaptadores para tubos Presston 100 (para AHO-9334)				
Referência:	Descrição			
AH0-9344	Kit adaptador para tubos de 1 mL			
AH0-9345	Kit adaptador para tubos de 3 mL			
AH0-9346	Kit adaptador para tubos de 6 mL			

Manifold a vácuo

Manifold a vácuo					
Referência:	Descrição	Unidade			
AH0-6023	Conjunto Extrator universal com 12 posições	cada			
AH0-6024	Conjunto Extrator universal com 24 posições	cada			
AH0-8950	Extrator universal para Placa com 96 poços, com medidor de Vácuo	cada			

Informações para compras de SPE

Tubos SPE

Processe várias amostras de uma só vez

Processe amostras manualmente

Sorventes à base de Sílica Strata®

Tubos	1 mL (10	1 mL (100/caixa)		3 mL (50/caixa)			6 mL (30/caixa)	
Fase	50 mg	100 mg	100 mg	200 mg	500 mg	200 mg	500 mg	1 g
C18-E	8B-S001-DAK	8B-S001-EAK	8B-S001-EBJ	8B-S001-FBJ	8B-S001-HBJ	8B-S001-FCH	8B-S001-HCH	8B-S001-JCH
C18-U	_	8B-S002-EAK	_	8B-S002-FBJ	8B-S002-HBJ	_	8B-S002-HCH	8B-S002-JCH
C18-T	_	8B-S004-EAK	_	8B-S004-FBJ	8B-S004-HBJ	_	8B-S004-HCH	8B-S004-JCH
C8	_	8B-S005-EAK	_	8B-S005-FBJ	8B-S005-HBJ	_	8B-S005-HCH	8B-S005-JCH
Phenyl	_	8B-S006-EAK	_	8B-S006-FBJ	8B-S006-HBJ	_	8B-S006-HCH	8B-S006-JCH
SCX	_	8B-S010-EAK	8B-S010-EBJ	8B-S010-FBJ	8B-S010-HBJ	_	8B-S010-HCH	8B-S010-JCH
WCX	_	8B-S027-EAK	_	8B-S027-FBJ	8B-S027-HBJ	_	8B-S027-HCH	8B-S027-JCH
SAX	_	8B-S008-EAK	8B-S008-EBJ	8B-S008-FBJ	8B-S008-HBJ	_	8B-S008-HCH	8B-S008-JCH
NH ₂	_	8B-S009-EAK	_	8B-S009-FBJ	8B-S009-HBJ	_	8B-S009-HCH	8B-S009-JCH
CN	_	8B-S007-EAK	_	8B-S007-FBJ	8B-S007-HBJ	_	8B-S007-HCH	8B-S007-JCH
Si-1	_	8B-S012-EAK	_	8B-S012-FBJ	8B-S012-HBJ	_	8B-S012-HCH	8B-S012-JCH
Florisil®	_	_	_	_	8B-S013-HBJ	_	8B-S013-HCH	8B-S013-JCH
EPH	_	_	_	_	8B-S031-HBJ	_	_	_
AL-N	_	_	_	_	8B-S313-HBJ	_	_	8B-S313-JCH

Sorventes de modo misto (para Drogas de Abuso)

Tubos	1 mL (100/caixa)	3 mL (50/caixa)		6 mL (30/caixa)			
Fase	_	100 mg	100 mg	150 mg	200 mg	200 mg	500 mg	_
Screen-C	_	8B-S016-EAK	8B-S016-EBJ	8B-S016-SBJ	8B-S016-FBJ	8B-S016-FCH	8B-S016-HCH	_
Screen-A	_	8B-S019-EAK	_	_	8B-S019-FBJ	8B-S019-FCH	8B-S019-HCH	_

Sorventes Poliméricos

Tubos	1 mL (10	0/caixa)	3 mL (50/caixa)		6 mL (30/caixa)			
Fase	50 mg	100 mg	_	200 mg	500 mg	200 mg	500 mg	1 g
SDB-L	8B-S014-DAK	8B-S014-EAK	_	8B-S014-FBJ	8B-S014-HBJ	8B-S014-FCH	8B-S014-HCH	8B-S014-JCH

Sorventes à base de Polímero Strata-X

Tubos	1 mL (10	0/caixa)	3 mL (50/caixa) 6 mL (30/caixa)		6 mL (30/caixa)			
Fase	30 mg	60 mg	60 mg	200 mg	500 mg	100 mg	200 mg	500 mg
Strata-X	8B-S100-TAK	8B-S100-UAK	8B-S100-UBJ	8B-S100-FBJ	8B-S100-HBJ	8B-S100-ECH	8B-S100-FCH	8B-S100-HCH
Strata-X-C	8B-S029-TAK	_	8B-S029-UBJ	8B-S029-FBJ	8B-S029-HBJ	8B-S029-ECH	8B-S029-FCH	8B-S029-HCH
Strata-X-CW	8B-S035-TAK	_	8B-S035-UBJ	8B-S035-FBJ	8B-S035-HBJ	8B-S035-ECH	8B-S035-FCH	8B-S035-HCH
Strata-X-A	8B-S123-TAK	_	8B-S123-UBJ	8B-S123-FBJ	8B-S123-HBJ	8B-S123-ECH	8B-S123-FCH	8B-S123-HCH
Strata-X-AW	8B-S038-TAK	_	8B-S038-UBJ	8B-S038-FBJ	8B-S038-HBJ	8B-S038-ECH	8B-S038-FCH	8B-S038-HCH
Strata-XL	8B-S043-TAK	_	8B-S043-UBJ	8B-S043-FBJ	8B-S043-HBJ	8B-S043-ECH	8B-S043-FCH	8B-S043-HCH
Strata-XL-C	8B-S044-TAK	_	8B-S044-UBJ	8B-S044-FBJ	8B-S044-HBJ	8B-S044-ECH	8B-S044-FCH	8B-S044-HCH
Strata-XL-CW	8B-S052-TAK	_	8B-S052-UBJ	8B-S052-FBJ	8B-S052-HBJ	8B-S052-ECH	8B-S052-FCH	8B-S052-HCH
Strata-XL-A	8B-S053-TAK	_	8B-S053-UBJ	8B-S053-FBJ	8B-S053-HBJ	8B-S053-ECH	8B-S053-FCH	8B-S053-HCH
Strata-XL-AW	8B-S051-TAK	_	8B-S051-UBJ	8B-S051-FBJ	8B-S051-HBJ	8B-S051-ECH	8B-S051-FCH	8B-S051-HCH

Acessórios para tubos

Tampas adapt	adoras	
Referência	Descrição	Unidade
AH0-7191	Tampas adaptadoras para tubos SPE de 1, 3 e 6 mL, de Polietileno, com ponta Luer	15/pct

Informações para compras de SPE

Placas SPE com 96 poços

Processe amostras com um Manifold a vácuo

Processe amostras com Sistema Automatizado

Sorventes à base de Polímero Strata®-X

Placas com 96 poços (2/caixa)					
Fase	10 mg	30 mg	60 mg		
Strata-X-AW	8E-S038-AGB	8E-S038-TGB	8E-S038-UGB		
Strata-X-A	8E-S123-AGB	8E-S123-TGB	8E-S123-UGB		
Strata-X	8E-S100-AGB	8E-S100-TGB	8E-S100-UGB		
Strata-X-C	8E-S029-AGB	8E-S029-TGB	8E-S029-UGB		
Strata-X-CW	8E-S035-AGB	8E-S035-TGB	8E-S035-UGB		
Strata-XL-AW	-	8E-S051-TGB	-		
Strata-XL-A	_	8E-S053-TGB	_		
Strata-XL	-	8E-S043-TGB	-		
Strata-XL-C	_	8E-S044-TGB	-		
Strata-XL-CW	-	8E-S052-TGB	-		

Placas de Microeluição Strata-X

Placas com 96 poços (cada)				
Fase	2 mg			
Strata-X-AW	8M-S038-4GA			
Strata-X-A	8M-S123-4GA			
Strata-X	8M-S100-4GA			
Strata-X-C	8M-S029-4GA			
Strata-X-CW	8M-S035-4GA			

Placas de coleta para poço redondo (Polipropileno)

Referência	Fundo do poço	Volume do poço	Unidade	Mantas de vedação sugeridas
AH0-7279	Redondo	1 mL	50/pct	AH0-8631 AH0-8632
AH0-8636	Redondo	2 mL	50/pct	AH0-8633 AH0-8634

Placas de coleta para poço redondo (Polipropileno)

			5	
Referência	Fundo do poço	Volume do poço	Unidade	Mantas de vedação sugeridas
AH0-7192	Cônico	350 µL	50/pct	AH0-8597 AH0-8598 AH0-8199 AH0-7195
AH0-7193	Cônico	1 mL	50/pct	AH0-8597 AH0-8598 AH0-8199 AH0-7195
AH0-7194	Cônico	2 mL	50/pct	AH0-8597 AH0-8598 AH0-8199 AH0-7195
AH0-8635	Redondo- Cônico	2 mL	50/pct	AH0-8597 AH0-8598 AH0-8199 AH0-7195

Sorventes à base de Sílica Strata®

Placas com 96 poços (2/caixa)						
Fase	25 mg	50 mg	100 mg			
C18-E	8E-S001-CGB	8E-S001-DGB	8E-S001-EGB			
C18-U	_	8E-S002-DGB	8E-S002-EGB			
C18-T	8E-S004-CGB	8E-S004-DGB	_			
C8	8E-S005-CGB	_	_			
Phenyl	8E-S006-CGB	_	8E-S006-EGB			
Silica	_	8E-S012-DGB	8E-S012-EGB			
NH ₂	8E-S009-CGB	8E-S009-DGB	8E-S009-EGB			
SAX	8E-S008-CGB	8E-S008-DGB	8E-S008-EGB			
SCX	8E-S010-CGB	8E-S010-DGB	8E-S010-EGB			
WCX	8E-S027-CGB	8E-S027-DGB	_			
Screen-C	_	8E-S016-DGB	8E-S016-EGB			
SDB-L	_	8E-S014-DGB	_			

Mantas de vedação para poços redondos

Referência	Descrição	Material	Unidade
AH0-8631	Perfurável, diâmetro de 7 mm	Silicone	50/pct
AH0-8632	Pré-cortado, diâmetro de 7 mm	Silicone	50/pct
AH0-8633	Perfurável, diâmetro de 8 mm	Silicone	50/pct
AH0-8634	Pré-cortado, diâmetro de 8 mm	Silicone	50/pct
AH0-7362	Tampa de vedação	_	10/pct

Mantas de vedação para poços quadrados

Referência	Descrição	Material	Unidade
AH0-8597	Perfurável	Silicone	50/pct
AH0-8598	Pré-cortado	Silicone	50/pct
AH0-8199	Perfurável	Santoprene™	100/pct
AH0-7195	Perfurável	Acetato-Vinilo de Etileno (EVA)	50/pct
AH0-7362	Tampa de vedação	_	10/pct

Existe um caminho mais limpo!

- **Alemanha** t: +49 (0)6021-58830-0 f: +49 (0)6021-58830-11

- f: +61 (0)2-9428-6445 auinfo@phenomenex.com

- **Áustria** t: +43 (0)1-319-1301 f: +43 (0)1-319-1300

- **Bélgica** +32 (0)2 503 4015 (francês) +32 (0)2 511 8666 (holandês) +31 (0)30-2383749 beinfo@phenomenex.com

- Canadá t: +1 (800) 543-3681 f: +1 (310) 328-7768

- **China** t: +86 400-606-8099
- phen@agela.com

- Dinamarca : +45 4824 8048 : +45 4810 6265

- f: +34 91-413-2290

- Estados Unidos t: +1 (310) 212-0555 f: +1 (310) 328-7768

- França t: +33 (0)1 30 09 21 10

- **Holanda** t: +31 (0)30-2418700 f: +31 (0)30-2383749

- Índia t: +91 (0)40-3012 2400 f: +91 (0)40-3012 2411

- t: +353 (0)1 247 5405 f: +44 1625-501796
- eireinfo@phenomenex.com

- Itália t: +39 051 6327511 f: +39 051 6327555

- Luxemburgo t: +31 (0)30-2418700
- nlinfo@phenomenex.com

- México t: 01-800-844-5226

- f: +45 4810 6265

- Porto Rico t: +1 (800) 541-HPLC f: +1 (310) 328-7768

- Reino Unido t: +44 (0)1625-501367 f: +44 (0)1625-501796 ukinfo@phenomenex
- **Suécia** t: +46 (0)8 611 6950 f: +45 4810 6265

- Suíça t: +41 61 692 20 20 f: +41 61 692 20 22

- Para demais paises:
 Matriz Phenomenex E.U.A.
 t: +1 (310) 212-0555
 f: +1 (310) 328-7768

Os produtos Phenomenex estão disponíveis em todo o mundo.
Distribuidor Exclusivo no Brasil: Allcrom – 11 3464 8900 – allcrom@allcrom.com.br

Marcas registradas
Strata e Kinetex são marcas registradas, e Zebron, Novum, Giga, SPLUS, Z-Liner, SecurityGuard e Presston são marcas comerciais da Phenomenex. Agilent é uma marca registrada da Agilent Technologies. Biotage, TurboVap e ISOLUTE são marcas registradas da Biotage AB Corp. Santoprene é uma marca comercial da Exxon Mobil Corporation. Florisil é uma marca registrada da U.S. Silica Co. API 4000 é uma marca comercial da AB SCIEX Pte, Ltd. A marca AB SCIEX está sendo utilizada sob licença.

Aviso Legal

A Phenomenex não é afiliada às empresas Biotage AB Corp., Agilent Technologies, U.S. Silica Co ou Exxon Mobil
Corporation. O comparativo das Separações pode não ser representativo para todas as Aplicações. SOMENTE PARA FINS DE PESQUISA. Não deve ser utilizado em Procedimentos de Diagnóstico.

- O Strata-X é patenteado pela Phenomenex. Patente americana N° 7.119.145
- O Novum está com patente pendente.
- A Kinetex EVO é patenteada pela Phenomenex. Patente americana números 7,563,367 e 8,658,038
- © 2017 Phenomenex, Inc. Todos os direitos reservados.